Moringa oleifera, or the horseradish tree, is a pan-tropical species that is known by such regional names as benzolive, drumstick tree, kelor, marango, mlonge, mulangay, nébéday, saijhan, and sajna. Over the past two decades, many reports have appeared in mainstream scientific journals describing its nutritional and medicinal properties. It is the purpose of this series of brief reviews to: (a) critically evaluate the published scientific evidence on M. oleifera, (b) highlight claims from the traditional and tribal medicinal lore and from non-peer reviewed sources that would benefit from further, rigorous scientific evaluation, and (c) suggest directions for future clinical research that could be carried out by local investigators in developing regions.
This is the first of four planned papers on the nutritional, therapeutic, and prophylactic properties of Moringa oleifera. In this introductory paper, the scientific evidence for health effects are summarized in tabular format, and the strength of evidence is discussed in very general terms. A third paper will probe the phytochemical components of Moringa in more depth. A fourth paper will lay out a number of suggested research projects that can be initiated at a very small scale and with very limited resources, in geographic regions which are suitable for Moringa cultivation and utilization.
This is the first of four planned papers on the nutritional, therapeutic, and prophylactic properties of Moringa oleifera. In this introductory paper, the scientific evidence for health effects are summarized in tabular format, and the strength of evidence is discussed in very general terms. A third paper will probe the phytochemical components of Moringa in more depth. A fourth paper will lay out a number of suggested research projects that can be initiated at a very small scale and with very limited resources, in geographic regions which are suitable for Moringa cultivation and utilization.
The following paper is intended to be useful for both scientific and lay audiences. Moringa oleifera is the most widely cultivated species of a monogeneric family, the Moringaceae, that is native to the sub-Himalayan tracts of India, Pakistan, Bangladesh and Afghanistan. This rapidly-growing tree (also known as the horseradish tree, drumstick tree, benzolive tree, kelor, marango, mlonge, moonga, mulangay, nébéday, saijhan, sajna or Ben oil tree), was utilized by the ancient Romans, Greeks and Egyptians; it is now widely cultivated and has become naturalized in many locations in the tropics.
All parts of the Moringa tree are edible and have long been consumed by humans. According to Fuglie (47) the many uses for Moringa include: alley cropping (biomass production), animal forage (leaves and treated seed-cake), biogas (from leaves), domestic cleaning agent (crushed leaves), blue dye (wood), fencing (living trees), fertilizer (seed-cake), foliar nutrient (juice expressed from the leaves), green manure (from leaves), gum (from tree trunks), honey- and sugar cane juice-clarifier (powdered seeds), honey (flower nectar), medicine (all plant parts), ornamental plantings, biopesticide (soil incorporation of leaves to prevent seedling damping off), pulp (wood), rope (bark), tannin for tanning hides (bark and gum), water purification (powdered seeds). Moringa seed oil (yield 30-40% by weight), also known as Ben oil, is a sweet non-sticking, non-drying oil that resists rancidity.
Moringa trees have been used to combat malnutrition, especially among infants and nursing mothers. Three non-governmental organizations in particular—Trees for Life, Church World Service and Educational Concerns for Hunger Organization—have advocated Moringa as “natural nutrition for the tropics.” Moringa is especially promising as a food source in the tropics because the tree is in full leaf at the end of the dry season when other foods are typically scarce.
A large number of reports on the nutritional qualities of Moringa now exist in both the scientific and the popular literature. Any readers who are familiar with Moringa will recognize the oft-reproduced characterization made many years ago by the Trees for Life organization, that “ounce-for-ounce, Moringa leaves contain more Vitamin A than carrots, more calcium than milk, more iron than spinach, more Vitamin C than oranges, and more potassium than bananas,” and that the protein quality of Moringa leaves rivals that of milk and eggs.
A large number of reports on the nutritional qualities of Moringa now exist in both the scientific and the popular literature. Any readers who are familiar with Moringa will recognize the oft-reproduced characterization made many years ago by the Trees for Life organization, that “ounce-for-ounce, Moringa leaves contain more Vitamin A than carrots, more calcium than milk, more iron than spinach, more Vitamin C than oranges, and more potassium than bananas,” and that the protein quality of Moringa leaves rivals that of milk and eggs.
These readers will also recognize the oral histories recorded by Lowell Fuglie in Senegal and throughout West Africa, who reports (and has extensively documented on video) countless instances of lifesaving nutritional rescue that are attributed to Moringa (47,48). In fact, the nutritional properties of Moringa are now so well known that there seems to be little doubt of the substantial health benefit to be realized by consumption of Moringa leaf powder in situations where starvation is imminent. Nonetheless, the outcomes of well controlled and well documented clinical studies are still clearly of great value.
The interested reader is also directed to the very comprehensive reviews of the nutritional attributes of Moringa prepared by the NGOs mentioned earlier (in particular, see references 47,123,157).
Phytochemicals are, in the strictest sense of the word, chemicals produced by plants. An examination of the phytochemicals of Moringa species affords the opportunity to examine a range of fairly unique compounds. In particular, this plant family is rich in compounds containing the simple sugar, rhamnose, and it is rich in a fairly unique group of compounds called glucosinolates and isothiocyanates (10,38). For example, specific components of Moringa preparations that have been reported to have hypotensive, anticancer, and antibacterial activity include 4-(4'-O-acetyl-a-L-rhamnopyranosyloxy)benzyl isothiocyanate [1], 4-(a-L-rhamnopyranosyloxy)benzyl isothiocyanate [2], niazimicin [3], pterygospermin [4], benzyl isothiocyanate [5], and 4-(a-L-rhamnopyranosyloxy)benzyl glucosinolate [6]. Disease Treatment and Prevention
The readers of this review are encouraged to examine two recent papers that do an excellent job of contrasting the dilemma of balancing evidence from complementary and alternative medicine (e.g. traditional medicine, tribal lore, oral histories and anecdotes) with the burden of proof required in order to make sound scientific judgments on the efficacy of these traditional cures (138,154). Widespread claims of the medicinal effectiveness of various Moringa tree preparations have encouraged the author and his colleagues at The Johns Hopkins University to further investigate some of these possibilities.
The interested reader is also directed to the very comprehensive reviews of the nutritional attributes of Moringa prepared by the NGOs mentioned earlier (in particular, see references 47,123,157).
Phytochemicals are, in the strictest sense of the word, chemicals produced by plants. An examination of the phytochemicals of Moringa species affords the opportunity to examine a range of fairly unique compounds. In particular, this plant family is rich in compounds containing the simple sugar, rhamnose, and it is rich in a fairly unique group of compounds called glucosinolates and isothiocyanates (10,38). For example, specific components of Moringa preparations that have been reported to have hypotensive, anticancer, and antibacterial activity include 4-(4'-O-acetyl-a-L-rhamnopyranosyloxy)benzyl isothiocyanate [1], 4-(a-L-rhamnopyranosyloxy)benzyl isothiocyanate [2], niazimicin [3], pterygospermin [4], benzyl isothiocyanate [5], and 4-(a-L-rhamnopyranosyloxy)benzyl glucosinolate [6]. Disease Treatment and Prevention
The readers of this review are encouraged to examine two recent papers that do an excellent job of contrasting the dilemma of balancing evidence from complementary and alternative medicine (e.g. traditional medicine, tribal lore, oral histories and anecdotes) with the burden of proof required in order to make sound scientific judgments on the efficacy of these traditional cures (138,154). Widespread claims of the medicinal effectiveness of various Moringa tree preparations have encouraged the author and his colleagues at The Johns Hopkins University to further investigate some of these possibilities.
A plethora of traditional medicine references attest to its curative power, and scientific validation of these popular uses is developing to support at least some of the claims. Moringa preparations have been cited in the scientific literature as having antibiotic, antitrypanosomal, hypotensive, antispasmodic, antiulcer, anti-inflammatory, hypocholesterolemic, and hypoglycemic activities, as well as having considerable efficacy in water purification by flocculation, sedimentation, antibiosis and even reduction of Schistosome cercariae titer (see Table 1).
For example, on the surface a report published almost 25 years ago (141) appears to establish Moringa as a powerful cure for urinary tract infection, but it provides the reader with no source of comparison (no control subjects). Thus, to the extent to which this is antithetical to Western medicine, Moringa has not yet been and will not be embraced by Western-trained medical practitioners for either its medicinal or nutritional properties.
For example, numerous studies now point to the elevation of a variety of detoxication and antioxidant enzymes and biomarkers as a result of treatment with Moringa or with phytochemicals isolated from Moringa (39,40,76,131). I shall briefly introduce antibiosis and cancer prevention as just two examples of areas of Moringa research for which the existing scientific evidence appears to be particularly strong.
Antibiotic Activity. This is clearly the area in which the preponderance of evidence—both classical scientific and extensive anecdotal evidence—is overwhelming. Benzyl isothiocyanate was already understood at that time to have antimicrobial properties. Subsequent elegant and very thorough work, published in 1964 as a PhD thesis by Bennie Badgett (a student of the well known chemist Martin Ettlinger), identified a number of glyosylated derivatives of benzyl isothiocyanate [5] (e.g. compounds containing the 6-carbon simple sugar, rhamnose) (8). The identity of these compounds was not available in the refereed scientific literature until “re-discovered” 15 years later by Kjaer and co-workers (73). Seminal reports on the antibiotic activity of the primary rhamnosylated compound then followed, from U Eilert and colleagues in Braunschweig, Germany (33,34).
For example, on the surface a report published almost 25 years ago (141) appears to establish Moringa as a powerful cure for urinary tract infection, but it provides the reader with no source of comparison (no control subjects). Thus, to the extent to which this is antithetical to Western medicine, Moringa has not yet been and will not be embraced by Western-trained medical practitioners for either its medicinal or nutritional properties.
For example, numerous studies now point to the elevation of a variety of detoxication and antioxidant enzymes and biomarkers as a result of treatment with Moringa or with phytochemicals isolated from Moringa (39,40,76,131). I shall briefly introduce antibiosis and cancer prevention as just two examples of areas of Moringa research for which the existing scientific evidence appears to be particularly strong.
Antibiotic Activity. This is clearly the area in which the preponderance of evidence—both classical scientific and extensive anecdotal evidence—is overwhelming. Benzyl isothiocyanate was already understood at that time to have antimicrobial properties. Subsequent elegant and very thorough work, published in 1964 as a PhD thesis by Bennie Badgett (a student of the well known chemist Martin Ettlinger), identified a number of glyosylated derivatives of benzyl isothiocyanate [5] (e.g. compounds containing the 6-carbon simple sugar, rhamnose) (8). The identity of these compounds was not available in the refereed scientific literature until “re-discovered” 15 years later by Kjaer and co-workers (73). Seminal reports on the antibiotic activity of the primary rhamnosylated compound then followed, from U Eilert and colleagues in Braunschweig, Germany (33,34).
Extensive field reports and ecological studies (see Table 1) forming part of a rich traditional medicine history, claim efficacy of leaf, seed, root, bark, and flowers against a variety of dermal and internal infections. Unfortunately, many of the reports of antibiotic efficacy in humans are not supported by placebo controlled, randomized clinical trials. Again, in keeping with Western medical prejudices, practitioners may not be expected to embrace Moringa for its antibiotic properties. Cancer Prevention. Since Moringa species have long been recognized by folk medicine practitioners as having value in tumor therapy (61), we examined compounds [1] and [2] for their cancer preventive potential (39).
In an even more recent study, Bharali and colleagues have examined skin tumor prevention following ingestion of drumstick (Moringa seedpod) extracts (12). Modern practitioners have used crude extracts and isolated bioactive compounds. It may well work, but more rigorous study is required in order to achieve a level of proof required for full biomedical endorsement of Moringa as, in this case, a cancer preventative plant.
I gratefully acknowledge the Lewis B. and Dorothy Cullman Foundation for providing unrestricted research funds that facilitated preparation of this review and work on Moringa in my laboratory; funding was also provided by the American Institute for Cancer Research and the NCI (Grant # R01 CA93780).
I gratefully acknowledge the Lewis B. and Dorothy Cullman Foundation for providing unrestricted research funds that facilitated preparation of this review and work on Moringa in my laboratory; funding was also provided by the American Institute for Cancer Research and the NCI (Grant # R01 CA93780).
Read complete article on: http://www.tfljournal.org/article.php?story=20051201124931586
Tidak ada komentar:
Posting Komentar
Silakan mengisi pesan, komentar atau saran anda :-)